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Wave Propagation in Coaxial-

Cylindrical Slow-Wave Systems*

INTRODUCTION

Recent interest in E-type traveling-wave

tubes, 1 in which a ribbon-shaped electron
beam is caused to follow a circular path by

balancing the centrifugal force of the par-
ticle against a steady radial electric tield
force, has led to an investigation of wave

propagation in azimuthally reentrant and
nonreentrant coaxial-cylindrical slow-wave

structures. The study is facilitated by the

simplifying approximation that the actual
azimuthally-periodic slow-wave circuit, sit-
uated along the inner conductor, can be re-
placed by a smooth dielectric cylinder.
Lt’bile such a dielectric cylinder would prob-
ably not be employed in the construction of

an actual tube, because of its small value of
surface impedance, it serves as a convenient
model in determining the general forms of
functional dependence for the field equations.

THE FIELD EQUATiONS

Although the first exhaustive study of
wave propagation in azimuthally reentrant
coaxial-cylindrical transmission systems ap-

pears to have been given by Kalahne,2 in
1905, the problem has since been widely

treated.8–6 In addition, Buchholz8 has stud-
ied the related problem of wave propagation

around a circular bend in a rectangular

waveguide, and Waldron7 has investigated

the characteristics of wave propagation in

helical waveguides of square cross section.
When the analysis is extended to the

case iu~,olving periodic structures situated
along the center conductor to produce azi-
muthally slow waves, the boundary condi-

tions are altered to include the periodic

variation of the inner conductor radius with
the spatial angle @. This change of shape

leads to an infinite number of azimuthal
space harmonic components, each one of
which is characterized by a particular
circular propagation constant. The am-
plitudes and phases of these harmonic

components are determined by satisfying

the conditions imposed on the fields by the
periodic boundaries of the circuit.

Though the procedure can, in principle,

be applied to any azimuthally-periodic
boundary, the method becomes involved for
any but the simplest structures. Moreover,

each time the geometry is changed the

evaluation must be repeated, so that prac-
tical considerations tend to restrict the anal-

ysis to a small number of potentially im-
portant configurations. Despite these diffi-
culties, certain general properties of azi-
muthally periodic slow-wave structures can

be inferred from a study of typical situa-

tions. Thus, when the circuit is reentrant,
or when the spatial period of the structure is

such that the fields would be undisturbed
by making it reentrant, the azimuthal space
harmonics form a countably infinite set of
integral values. \\Then the nature of the

structure is such that the fields would be dis-
turbed by making it reentrant, the space
harmonics form a countably infinite set of

rational fractional, or general nonintegral,

order values. Either of these situations in-
volves a discrete summation over the asso-
ciated circular propagation constants in or-
der to obtain the field expressions. It follows
that the general expressions for the electric
and magnetic field intensities have the form

A.PO =a quantity depending on

PO and n, which is a
measure of the space
harmonic amplitude of

the associated E-mode

wave,

B,,fl, =a quantity depending on

130 and n, which is a
measure of the space

harmonic amplitude of

the associated If-mode
wave,

V6,(knr) = IpO(kn~)KpO(knrJ

–~’~,(knf)~60(kr,~s),

Yd,(kmv) = 160(kn~)A’fl;(knrJ

—K8Jkn~)~~0’(k,t~J,

I~O(k.r), A“~o(k,,r) = hyperbolic Bessel func-

tions of the first and sec-
ond kinds, respectively,

of order f30 and argu-
ment knr,

?’.=radius of the inside sur-
face of the outer con-

ductor (in an electron

beam device this corre-
sponds to the sole radius)
in meters.

(1)

(2)

where

MO= free-space permeability
in henries per meter,

eo= free-space permittivity
in farads per meter,

DO= circular propagation
constant in electrical ra-
dians per spatial radian,

u = electrical angular veloc-

ity of the RF wave in
electrical radians per

second,

L = height of the waveguide
parallel to the cylindrical
axis in meters,

r = radial coordinate vari-
able in meters,

@azimuthal coordinate
variable in radians,

~ = axial coordinate variable

in meters,
t = time in seconds,

k.= <(zrr/L)2 – C02PW0 elec-
trical radians per meter,

The primes appearing in the foregoing ex-

pression indicate differentiation of the asso-
ciated functions with respect to kmr. The

terminology of Morse and Feshback8 is used
in referring to the Bessel functions as “hy-
perbolic” rather than “modified,” since
these expressions are related to the corre-
sponding Bessel functions of real argument
in a manner similar to that of the more ele-
mentary trigonometric and hyperbolic func-

tions.
The transition from the Bessel functions

of real argument, which accompany higher-
mode propagating waves in coaxial-cylindri-

cal transmission systems, to the hyperbolic
Bessel functions employed here results from

the premise that the fringing circuit fields,
which permeate the interaction space, could
not exist in the absence of the slow-wave
circuit. The introduction of a lossless di-
electric cylinder surrounding the center con-

8 P. M. Morse and H. Feshback, “Methods of
Theoretical Physic s,” McGraw-Hill Book Co., Inc.,
New York, N. Y., pts. 1, 2; 1953.
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ductor (which is assumed to be homogeneous
and isotropic), as a replacement for the

actual slow-wave circuit, implies the pres-

ence of both axial and azimuthal slowing,
although only the latter is of importance in

E-type devices. A limitation inherent in the

use of the dielectric cylinder arises from the
fact that the dielectric is perfectly smooth,

so that analyses based on this model indicate
the presence of only one of the infinite num-

ber of possible space harmonics produced in

the actual structure. However, the con-
straint is not serious so long as the condi-
tions are such that the electron beam effec-
tively interacts with only one space-harmonic
component of the RF field.

i% FIJRTHER &AMINA’LTON OF THE
FIELD RELATrONS

A study of the field equations leads to
some interesting conclusions concerning the

characteristics of the transmission system

described above. It is convenient in this

study to regard the entire cross-sectional

area of the system as being divided into the
“slow-ware region, ” containing the periodic
RF structure, and the “interaction space”
which surrounds theslow-wave region. Thus,
in the slow-wa>.e region the radial propaga-
tion constant k~. is given by

“2=[U2-(321 ‘7)
~vhere C2is the permittivity associated with

the dielectric cylinder in farads per meter,
I t is apparent that k~mzmust be greater than

zero, for otherw-ise wave propagation would

be cut off in the slow-wave region, and there-
fore inthe entire system. It followst hatthe

radial variation of all field components in

the slow-wave region must exhibit the real
argument (rather than the imaginary argu-
ment) Bessel function behavior. The cutoff
condition for axial propagation in the slow-
\vave region, k2.2=0, leads to

(8)

as shcmm in Fig. 1. It may be noted that the

allowed range of axial eigenvalues, corre-
sponding to the integer n values, increases

with frequency, with the height of the wave-
guide parallel to the cylindrical axis, and
with the dielectric constant.

Since only the cutoff modes were as-
sumed to be present in deriving the field re-

lations given above, then the radial propa-
gation constant appropriate to the interac-
tionspacekmyields, fortheconclition knZ=O,

as shown in Fig. 2. Thus, a finite and
bounded set of axial eigenvalues associated
with wave propagation in the dew-wave

region leads to a pair of sets of infinite eigen-
values associated with the cutoff modes per-
meating the interaction region. [t is appar-
ent, howe~-er, that if the guide height L or
the ope,-atiug frequency is sufficiently in-
creased to permit E- or H-wave propagating
modes to exist in this space, then the ele-
ments of the periodic structure act as

sources of radiation that excite strong fields
in the region surrounding the RF circuit.

The propagating-wave axial eigenvalues then

Fig. l—Grar)hical representation of the range of H iu
the slow-wave region,

Fig. 2—Graph!cal representation of the range of n in
the interaction space.

lie in the shaded area of Fig. 2, and the

radial variation of all field components now
take on the real-argument Bessel function

variation.

Since the Hankel functions of the first
and second kinds are linearly related to the
two types of Bessel functions of real argu-
ment, it may be shown that radially propa-

gating wa~,es accompany axially propagating
wa~,es,, and that radially attenuating func-

tions accompany axially cutoff modes. The
fields on the slow-wave structure must al-

ways be associated with radially and axially

propagating modes, since operation below

the cutoff frequency of the RF circuit sup-

presses electromagnetic radiation in the

entire system. The fields in the interaction
space may be associated either with radially

and axially propagating or attenuating

waves, depending on the relation of the
operating frequency to the cutoff frequency
of the interaction space.

The lowest E-mode field occurs for n = O,

because E, has the axial variation

()I’LT

Cos —z

L’

while the lowest H-mode tielcl occurs for

n = 1, because Ha has the axial variation

()‘nrr

sin — z
L

Howe\-er, since Ed possesses the same axial

variation as H., it follows that the lowest
mode, for which effective electron-wave in-

teraction in E-type devices is possible, oc-
curs when n = 1.

In contrast to the “permitted sets” of

axial eigenvafues, alf field com pouents pos-

sess an azimuthal variation of the form
e—j/d@. A study of this function leads to the
interesting physical interpretation that, as

far as azimuthal variations are concerned,

the waves may be regarded as propagating
in a Riemann space. g Each spaticzt excursion
of o corresponding to 27r electrical radians of
@06 causes the waves to encol]nter a “new

leaf” of this surface, so that the total num-
ber of leaves required to provide a closed
domain of electrical angular Values of the

8 S. A. Schelkarroff, “l%ctromagnttic \Vave>, ”
D. Van Nostrand Co., Inc., New York, N. Y.; 1953.

fields is equal to the circular propagation

constant. Thus, PO is a measure of the num-

ber of leaves encompassed in completing a
spatial excursion of 2m radiam. The order
of the real and hyperbolic Bessel functions
which specify the radial behavior of all fields
are therefore determined by the number of
Riemann leaves involved.
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Ring Network Filter*

A filter circuit comprising two ring net-

works which are connected by two quarter-
wavelength lines is described. This circuit

has one output with a relatively wide pass

band and a second output with a sharp re-

jection band. A printed micrcstrip ‘version
designed for 1-Gc operation is shown ill Fig.
1. Input is at terminal 1, band-pass o(Ltput
at terminal 3, and rejection band output at

terminal 2.

Fig. I—I .Gc filter on + inch teflon fiberglass.

A heuristic explanation of circuit action
at the center frequency is as follows: Cur-
rent entering arm 1 tends to divide equally

between terminals A and 2 of the first ring
network. A portion of the current entering
terminal .4 travels around the loop ABCLI,
arriving at terminal D. Here one-half of the
current goes to terminal 2 and one-half to
terminal .4. The part going to terminal A
arrives in-phase while the part going to
terminal 2 arri~,es antiphase with the cur-
rents flowing directly from ternrinal 1. The

resultant partial cancellation at terminal 2
forces more current to enter arm All, which

in turn reduces the output from terminal 2
even more. Equilibrium is reached when the
net current at terminal 2 is zero and all cur-
rent into terminal 1 Ieal-es by terminal 3.

For zero circuit losses, cancellation of cnr-
rents at terminal 2 would be complete, and
there would be zero insertion loss between
terminal 1 and terminal 3. Rejection occurs
for a narrow band of frequencies at or near
which the loop A B CD.4 is one-wavelength
long.

* Received by the PGMTT, March 10,-1961.


